Parametrización de Weierstrass–Enneper y Superficies Mínimas Armónicas

La parametrización de Weierstrass-Enneper es una parametrización que hace uso del análisis complejo en la geometría diferencial para encontrar superficies mínimas en coordenadas isotermas respectivamente.

La Superficie de Enneper es un ejemplo de superficie mínima isoterma


Por consiguiente partiendo del  análisis complejo  ${\large z = u + iv }$

$${\large \begin{align*} u &= \frac{z + \bar{z}}{2} \hspace{0.5cm}&\hspace{0.5cm} v &= \frac{z - \bar{z}}{2i} \\ \frac{\partial}{\partial z} &= \frac{1}{2}\left(\frac{\partial}{\partial u} - i\frac{\partial}{\partial v} \right) \hspace{0.5cm}&\hspace{0.5cm} \frac{\partial}{\partial \bar{z}} &= \frac{1}{2}\left(\frac{\partial}{\partial u} + i\frac{\partial}{\partial v} \right) \end{align*}}$$

Donde u es la parte real y v es la parte imaginaria. Ahora si usamos el análisis complejo para estudiar una superficie en ${\large \mathbb{R}^3 }$

$${\large \begin{align*} S(u,v) &= \left(r_{1}(u,v), r_{2}(u,v), r_{3}(u,v) \right) \\ S(z,\bar{z}) &= \left(r_{1}(z,\bar{z}), r_{2}(z,\bar{z}), r_{3}(z,\bar{z}) \right) \\ S(z,\bar{z}) &= r_{j}(z,\bar{z}) \end{align*} }$$

Las derivadas parciales de la superficie ${\large S(z,\bar{z}) }$ son:

$${\large \begin{align*}\frac{\partial S}{\partial z} &= \frac{\partial r_{j}}{\partial z} = \frac{1}{2}\left(\frac{\partial r_{j}}{\partial u} - i\frac{\partial r_{j}}{\partial v} \right)  \\ \frac{\partial S}{\partial \bar{z}} &= \frac{\partial r_{j}}{\partial \bar{z}} = \frac{1}{2}\left(\frac{\partial r_{j}}{\partial u} + i\frac{\partial r_{j}}{\partial v} \right) \end{align*} }$$

El modulo de las derivadas parciales son:

$${\large \begin{align*} \left\| \frac{\partial S}{\partial z} \right\|^2 &= \frac{1}{4}\left( \frac{\partial r_{j}}{\partial u} \right)^2 - \frac{1}{2}\left(\frac{\partial r_{j}}{\partial u} \frac{\partial r_{j}}{\partial v}\right) - \frac{1}{4}\left( \frac{\partial r_{j}}{\partial v} \right)^2 \\ \left\| \frac{\partial S}{\partial \bar{z}} \right\|^2 &= \frac{1}{4}\left( \frac{\partial r_{j}}{\partial u} \right)^2 - \frac{1}{2}\left(\frac{\partial r_{j}}{\partial u} \frac{\partial r_{j}}{\partial v}\right) + \frac{1}{4}\left( \frac{\partial r_{j}}{\partial v} \right)^2 \end{align*} }$$

Si la superficie ${\large S(z,\bar{z}) }$ es una superficie isoterma entonces ${\large E = G}$ y ${\large F = 0}$

$${\large \begin{align*} E &= \frac{\partial r_{j}}{\partial u} \\ F &= \frac{\partial r_{j}}{\partial u} \frac{\partial r_{j}}{\partial v} \\ G &= \frac{\partial r_{j}}{\partial v} \end{align*} }$$

Por consiguiente:

$${\large \begin{align*} \left\| \frac{\partial S}{\partial z} \right\| &= 0 \hspace{0.5cm}&\hspace{0.5cm}  \frac{\partial S}{\partial z} &= \phi_{j} \\ \left\| \frac{\partial S}{\partial \bar{z}} \right\| &= 0  \hspace{0.5cm}&\hspace{0.5cm} \frac{\partial S}{\partial \bar{z}} &= \bar{\phi}_{j} \end{align*} }$$

Ahora realizando la derivada parcial de segundo orden para encontrar la relación con la función armónica ${\large S(u,v) }$

$${\large \begin{align*} \frac{\partial }{\partial \bar{z}}\left( \frac{\partial S}{\partial z} \right) &= \frac{\partial}{\partial \bar{z}}\left( \frac{1}{2}\left(\frac{\partial r_{j}}{\partial u} - i\frac{\partial r_{j}}{\partial v} \right) \right) \\ \frac{\partial }{\partial \bar{z}}\left( \frac{\partial S}{\partial z} \right) &= \frac{1}{2}\left( \frac{\partial }{\partial u}\left( \frac{1}{2}\frac{\partial S}{\partial u} - \frac{1}{2}\frac{\partial S}{\partial v}i\right) + i\frac{\partial }{\partial v}\left( \frac{1}{2}\frac{\partial S}{\partial u} - \frac{1}{2}\frac{\partial S}{\partial v}i \right) \right) \\ \frac{\partial }{\partial \bar{z}}\left( \frac{\partial S}{\partial z} \right) &= \frac{1}{4}\left( \frac{\partial^2 S}{\partial u^2} + \frac{\partial^2 S}{\partial v^2} \right) \\ \frac{\partial }{\partial \bar{z}}\left( \frac{\partial S}{\partial z} \right) &= \frac{1}{4} \nabla^2 S(u,v) \\ \\ \frac{\partial }{\partial z}\left( \frac{\partial S}{\partial \bar{z}} \right) &= \frac{\partial}{\partial z}\left( \frac{1}{2}\left(\frac{\partial r_{j}}{\partial u} + i\frac{\partial r_{j}}{\partial v} \right) \right) \\  \frac{\partial }{\partial \bar{z}}\left( \frac{\partial S}{\partial z} \right) &= \frac{1}{2}\left( \frac{\partial }{\partial u}\left( \frac{1}{2}\frac{\partial S}{\partial u} + \frac{1}{2}\frac{\partial S}{\partial v}i\right) - i\frac{\partial }{\partial v}\left( \frac{1}{2}\frac{\partial S}{\partial u} + \frac{1}{2}\frac{\partial S}{\partial v}i \right) \right) \\ \frac{\partial }{\partial \bar{z}}\left( \frac{\partial S}{\partial z} \right) &= \frac{1}{4}\left( \frac{\partial^2 S}{\partial u^2} + \frac{\partial^2 S}{\partial v^2} \right) \\ \frac{\partial }{\partial \bar{z}}\left( \frac{\partial S}{\partial z} \right) &= \frac{1}{4} \nabla^2 S(u,v) \end{align*} }$$

Ahora encontraremos los diferenciales complejos.

$${\large \begin{align*} z &= u + iv \hspace{0.5cm}&\hspace{0.5cm} \bar{z} &= u - iv \\ \partial z &= \partial u + i\partial v \hspace{0.5cm}&\hspace{0.5cm} \partial \bar{z} &= \partial u - i\partial v \end{align*} }$$

Ahora procederemos hallar el diferencial de ${\large r_{j}}$

$${\large \begin{align*} \partial r_{j} &= \phi_{j} \partial z + \bar{\phi}_{j} \partial \bar{z} \\ \partial r_{j} &= \frac{1}{2}\left(\frac{\partial r_{j}}{\partial u} - i\frac{\partial r_{j}}{\partial v} \right) (\partial u + i\partial v) + \frac{1}{2}\left(\frac{\partial r_{j}}{\partial u} + i\frac{\partial r_{j}}{\partial v} \right) (\partial u - i\partial v) \\ \partial r_{j} &= \frac{\partial r_{j}}{\partial u}\partial u + \frac{\partial r_{j}}{\partial v}\partial v \\ \partial r_{j} &= 2 \left( \frac{1}{2} \left( \frac{\partial r_{j}}{\partial u} - i\frac{\partial r_{j}}{\partial v}\right) \right) \cdot (du + idv) \\ \partial r_{j} &= 2\phi_{j} dz \end{align*} }$$

Tomando la parte real de la función compleja

$${\large \begin{align*} \partial r_{j} &= 2\phi_{j} dz \\ \partial r_{j} &= 2Re\left(\phi_{j} dz\right) \\ r_{j} &= 2 Re \left( \int \phi_{j} dz\right) + C_{j} \end{align*} }$$

Partiendo del modulo de la derivada parcial de la superficie S

$${\large \begin{align*} 0 &= \left\| \frac{\partial S}{\partial z} \right\|^2 \\ 0 &= {\phi_{j}}^2 \\ 0 &= {\phi_{1}}^2 + {\phi_{2}}^2 + {\phi_{3}}^2 \\ - {\phi_{3}}^2 &= {\phi_{1}}^2 + {\phi_{2}}^2 \\ - {\phi_{3}}^2 &= (\phi_{1} + i\phi_{2})(\phi_{1} - i\phi_{2}) \end{align*} }$$

Si definimos las siguientes funciones

$${\large  \begin{equation*} f = \phi_{1} - i\phi_{2} \hspace{1cm},\hspace{1cm} g = \frac{\phi_{3}}{\phi_{1} -  i\phi_{2}} \end{equation*}}$$

Las componentes de ${\large \phi_{j} }$ quedan de la siguiente forma:

$${\large \begin{align*} \phi_{1} &= f(1-g^2)/2 \\ \phi_{2} &= if(1+g^2)/2 \\ \phi_{3} &= fg \end{align*} }$$

Superficies Mínimas en Coordenadas Isotermas

Una superficie mínima es una superficie con curvatura media igual a cero. En el caso de una superficie con coordenadas isotermas, es decir, ${\large E = G}$ y ${\large F = 0}$. Por lo tanto la superficie es armónica con respecto a las variables u y v.

  • Superficie de Enneper
La parametrización de Weierstrass - Enneper para la superficie de Enneper es deducida a partir de las funciones complejas ${\large f(z) = 1}$ y ${\large g(z) = z}$

$${\large \begin{align*} r_{1} &= Re\left(z - \frac{z^3}{3} \right) \\ r_{2} &= Re\left(zi - \frac{z^3 i}{3} \right) \\ r_{3} &= Re\left( z^2 \right) \end{align*}}$$


${\large S(u,v) = \left( u - (1/3)u^3 +uv^2, \hspace{0.2cm} (1/3)v^{3} - vu^2 -v, \hspace{0.2cm} u^2 - v^2 \right)} $



  • Catenoide
La parametrización de Weierstrass - Enneper para el Catenoide es deducida a partir de las funciones complejas ${\large f(z) = e^{z/c}}$ y ${\large g(z) = e^{-z/c}}$

$${\large \begin{align*} r_{1} &= 2cRe\left( \cosh(z/c) \right) \\ r_{2} &= 2cRe\left( i\sinh(z/c) \right) \\ r_{3} &= 2Re\left( z \right) \end{align*}}$$


${\large S(u,v) = (2c\cosh(u/c)\cos(u/c), \hspace{0.2cm} 2c\cosh(u/c)\sin(u/c), \hspace{0.2cm} 2u)}$






Comentarios